IFLST 0 Induction

Prove by Induction:

$0.11 \cdot 2^{1}+2 \cdot 2^{2}+3 \cdot 2^{3}+. .+n \cdot 2^{n}=2+(n-1) 2^{n+1}$
$0.2 \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}$,
$0.31^{2}+2^{2}+3^{2}+\ldots n^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}$,
$0.41^{3}+2^{3}+3^{3}+\ldots n^{3}=\frac{1}{4}(1+n)^{2} n^{2}$,
$0.51 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n \cdot(n+1)=\frac{1}{3} n(n+1)(n+2)$,
$0.62^{3}+4^{3}+\ldots(2 n)^{3}=2 n^{2}(n+1)^{2}$,
$0.71 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots n \cdot n!=(n+1)!-1$,
$0.85 n \leqslant n^{2}-3$ for $n \geqslant 6$,
$0.9 n^{3}<4^{n}$,
$0.103^{n}>n 2^{n}$,
0.11 Bernouli inequality $(1+a)^{n} \geqslant 1+n \cdot a, \quad a>-1, \quad n \in \mathbb{N}$,
$0.121+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+. .+\frac{1}{\sqrt{n}}>\sqrt{n}, \quad n \geqslant 2$,
$0.138 \mid 5^{n}+2 \cdot 3^{n-1}+1$,
$0.1411 \mid 2^{6 n+1}+3^{2 n+2}$,
$0.15133 \mid 11^{n+2}+12^{2 n+1}$
$0.169 \mid 4^{n}+24 n-1$.
0.17 The sequence a_{n} is given by $a_{0}=1 a_{n}=\frac{a_{n-1}}{2 a_{n-1}+1}$. Find and prove a formula for a_{n}.
0.18 Prove there is infinite number of prime numbers.
0.19 Consider n points, for every two of them there is an arrow from one to another. A center is a point from which we can get to any other point in two steps going in the direction on arrows. Prove that a center always exists.
0.20 We will prove inductively that all cats are in the same color. Take a group consisting one cat. All cats in this group are in the same color. Induction step: assume any group of k cats are in the same color. Consider group of $k+1$ cats. Take one of them, by induction assumption the are in the same color. Put it back an take another one, the rest is again of the same color. So all $k+1$ cats are in the same color. The prove is complete, what is wrong?

